8 B - Orbits of Nilpotent Order 2 and Link Patterns Anna

نویسنده

  • ANNA MELNIKOV
چکیده

Abstract. Let Bn be the group of upper-triangular invertible n×n matrices and Xn be the variety of strictly upper triangular n × n matrices of nilpotent order 2. Bn acts on Xn by conjugation. In this paper we describe geometry of orbits Xn/Bn in terms of link patterns. Further we apply this description to the computations of the closures of orbital varieties of nilpotent order 2 and intersections of components of a Springer fiber of nilpotent order 2. In particular we connect our results to the combinatorics of meanders and Temperley-Lieb algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normality of very even nilpotent varieties in D-2l

For the classical groups, Kraft and Procesi [4], [5] have resolved the question of which nilpotent orbits have closures which are normal and which are not, with the exception of the very even orbits inD2l which have partition of the form (a, b) for a > b even natural numbers satisfying ak + b = 2l. In this article, these orbits are shown to have normal closure using the technique of [8].

متن کامل

Series of Nilpotent Orbits

We organize the nilpotent orbits in the exceptional complex Lie algebras into series and show that within each series the dimension of the orbit is a linear function of the natural parameter a = 1, 2, 4, 8, respectively for f4, e6, e7, e8. We observe similar regularities for the centralizers of nilpotent elements in a series and graded components in the associated grading of the ambient Lie alg...

متن کامل

Principal Nilpotent Orbits and Reducible Principal Series

Let G be a split reductive p-adic group. In this paper, we establish an explicit link between principal nilpotent orbits of G and the irreducible constituents of principal series of G. A geometric characterization of certain irreducible constituents is also provided.

متن کامل

Pieces of Nilpotent Cones for Classical Groups

We compare orbits in the nilpotent cone of type Bn, that of type Cn, and Kato’s exotic nilpotent cone. We prove that the number of Fq-points in each nilpotent orbit of type Bn or Cn equals that in a corresponding union of orbits, called a type-B or type-C piece, in the exotic nilpotent cone. This is a finer version of Lusztig’s result that corresponding special pieces in types Bn and Cn have th...

متن کامل

The extremal black holes of N = 4 supergravity from so ( 8 , 2 + n ) nilpotent orbits

We consider the stationary solutions of N = 4 supergravity coupled to n vector multiplets that define linear superpositions of non-interacting extremal black holes. The most general solutions of this type are derived from the graded decompositions of so(8, 2 + n) associated to its nilpotent orbits. We illustrate the formalism by giving explicitly asymptotically Minkowski non-BPS solutions of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008